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ON APPROXIMATION OF THE LEVEL PROBABILITIES AND ASSOCIATED DISTRIBUTIONS

IN ORDER RESTRICTED INFERENCE

Tim Robertson and F. T. Wright

SUMMARY

ﬂ‘The use of much of the distribution theory developed for order re-
stricted inference has been limited by the lack of computation algorithms
for the "level probabilities" encountered in that theory. An approxima-
tion for these level probabilities, which accounts for the pattern of

Jurge and small "weights,"

is developed. This approximation and the equal
weiphts approximation are examined in several different ways including the
use of randomly penerated weight sets. Both approximations appear to be
reasonable for weight sets having a moderate amount of variability. The
quality of the equal weights approximation, as a function of the amount

of variability in the weights, deteriorates more quickly for certain pat-
terns of large and small weights than for others. Thus, the approximation
based upon the pattern of large and small weights is a significant improve-

ment over the equal weights approximation. Finally, Siskind's (1976)

aporoximation, which can be applied if the number of parameters is not
t.oo large, is discussed.

K\V//,

Key words and phrases: Order restricted inference, level probabilities,

chi-bar-square distribution.




1. Introduction. The chi-bar~square (iQ) and E-bar-square (E°)
distributions are fundamental to the theory of order restricted hypothesis
tests. For a comprehensive treatment of the early work in order restricted
inference the reader may consult Barlow, Bartholomew, Bremner and Brunk
(1972). These distributions have tail probabilities which are linear com-
binations of the tail probabilities of standard distributions and they
depend upon the order restriction through the coefficients in these linear
combinations. The values of these coefficients are the probabilities that
the order restricted maximum likelihood estimates of normael means assume
specified numbers of distinct values, which are called levels. These prob-
abilities are computed under the hypothesis that the population means are
equal. The maximum likelihood estimates are based upon independenp samples
from each of the populations and depend upon the vector of relative precisions
of the sample means as estimates of the corresponding population means.

The precisions will be referred to as weights. The use of these tests has
been limited by the fact that these level probabilities can be virtually
impossible to compute if the weights are not all equal. In this paper we
describe a technique for approximating these level probabilities for a
linear order restriction and for unequal precisions. This approximation

is based upon an idea of Chase (19Th) and uses the pattern of large and
small relative precisions. It seems to be particularly good when the rela-
tive precisions have two distinct values. However, it seems to provide a
sulisfactory approximation as long as the variation in the relative preci-
sions is not too large. For example, our study of the case of five means

indicates that if the ratio of the largest relative precision to the small-

est relative precision is no more than 4.7 then this approximation provides




an adequate approximation for the tail probabilities of the §2 distribu-
tion. This is probably due to the lack of sensitivity of the level proba-
bilities to changes in the weights. This "robustness" was noticed by both
Grove (1980) and Siskind (1976). Siskind conjectured that, because of this
robustness, the equal weights case should provide reasonable approximations
except in extreme cases.

fn Section 2 we provide some background on the computation of these
level probabilities and report upon our investigation of Siskind's conjec-
ture about the adequacy of the equal weights approximation. It appears
Lhat, the quality of the cqual weights approximation is related to the pat-
tern of large and small weights and in Section 3 we explore another approx-
imation which is based upon such patterns. The equal weights case is used
45 a benchmark for judging this new approximation. In Section 4 we briefly

discuss Sickind's (1976) approximation for the level probabilities.

2. Preliminaries and the equal weights approximation. Suppose we have

independent random samples from each of k normal populations having means

ul,p?,-°-,pk and assume that the corresponding sample means and sample

sizes are denoted by ;i,?é,---,;% and nl,ng,---,nk. Let Pw(l,k) de-

nite the probability that the maximum likelihood estimates of L R
o s : # s . < € o K

sub.ject to the linear order restrlct;on H .u1 u2 uk have

exactly £ distinet levels. These level probabilities are computed under

the assumption that ul = u2 = ... = “k and they depend upon the vector

w = (wl,wg,---,wk) of relative precisions of the sample means, xi, as

estimates of the corresponding population means, pi; i=1,2,°+",k. We

D

e accminge that either the population varinanecs, 005 1 =10,k are

Known or 10 unknown they are assumed cqual. The value of w,  ia “i/oi




in the former case and this value is ng in the latter.

For k =5 and for arbitrary weights, formulas for Pw(L,k) are given
on pages 1h0-1L2 of Barlow et al. (1972). There are typographical efrors
in the formulas for Pw(3’5) and Pw(l,h). The formula for PW(S,S)
involves an integral which may be evaluated numerically or approximated
using methods described in Barlow et al. (1972). Cran (1981) gives a com-
puter algorithm for the computation of Pw(ﬂ,k) for k < U4 and for their
approximation for k = 5,6. For kX = 5 he uses an approximation due to
Plackett (1954) and for k = 6 he uses an approximation due to Childs (1967).

For the equal weights case, that is, w, =w,=--:-=w a recursion

1 "2 k’
formula for computing Pw(ﬁ,k) is given in Corollary B on page 1U45 of
Barlow et al. (1972). This formula is a quite satisfactory computation
algorithm for this important special case. We denote the equal weights

level probabilities by P(4,k). The generating function of the sequence

{P(L’k)}§~1 is given by

_ [s+k-1\ _ s(s+1)---(s+k-1)
3 (s) = (S X ) === k! : :

Grove (1980) and Siskind (1976) both claimed that the Pw(z,k)'s are
not very sensitive to changes in the weights and that the equal weights
case should provide reasonable approximations except for extreme cases.
Sickind felt that the pattern of large and small weights was important and
that approximation is difficult for a U-shaped configuration of weights,
that is, for weight sets with wl and wk relatively large and the other

wi small.

For the most part, we will judge approximations as they apply to

R
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Bartholomew's -i2 distribution. The tail probabilities of this distribu-~

tion are given by
—2 k 2
= =
prw[)(k t] Z#l Pw(l,k)pr[xz_th]

where Xi—l denotes a standard chi-square variable having 4-1 degrees
freedom (xg =0). Distributions, which have tail probabilities which are
linear combinations of the tail probabilities of standard distributions
arise in several restricted testing problems. In addition to those dis-
cussed in Barlow et al. (1972), see Robertson and Wegman (1978), Robertson
(1978), Grove (1980), Robertson and Wright (1981), Robertson and Warrack
(1981), and Dykstra and Robertson (1981a,b).

Robertson and Wright (1982) derive upper and lower bounds
for the ‘ig and fg distributions and prove that, in general, these bounds
cannot be improved upon. vThe lower bound is approached using U-shaped
weight sets of the form (a,e,e,---,e,b) where a,b >0 and € —* 0.
The upper bound is approached using [(l-shaped weight sets of the form

H H-1 H-1 H
(e ,¢ ,€ )

s sttt e€,1,€,7",€ and letting € —* 0. This is for odd

k where k = 2H+l. The obvious adjustments are made for even k.

These bounds can differ substantially. For example, for k = 5 the

-

5 percent, equal weights critical value is 5.049. The upper and lower
bounds for prw[—)zg 2 5.049] are .013 and .096.
What is the nate of convergence of prw[ig 2t] to the bounds?

p— ]
We computed I“QIX% 2 5,049] for various weight sets. Since k is 5

woeocnn compitbe, usingg o namerienl inborralion on (U18) in Barlow of, .




(1972), an cxact value for prwfig 25.049]. If the equal weights approxi-

mit.ion is pood then this should be close to .05. For each weight set we

aluo computed the ratio, R, of the largest weight to the smallest weipght
in order to gain some feel for the likelihood that the weight set might be
encountered in practice. For U-shaped configurations we let
w=(l,e,6,6,1) with e chosen so that R = ¢L ranged between 1 and 30.
The results are given in Table 1. The probabilities, prw[i2 = 5,0k9]

5
.0333. We see that the lower

decreased from .05 at € =1 %o .021 at €

3 bound, .01l3, is approached rather slowly.
(e,/g,lyfg;e) with € again

chosen so that R = e_l ranged between 1 and 30. These results are also

For [N-shaped configurations we let w

given in Table 1. These probabilities increased from .05 to .0T5. Thus ,
it seems that while the range of probabilities is considerable it iz nol an
extreme as the bounds suggest, at least for weight sets usually encountercd
in practice.

Arte U-shaped and N-shaped the only configurations of weights gor
which the equal wedights case gives a poor approximation?

We carried out a "random search" for weight configurations for which

-2 .
‘ DQJXS 2 5.049] 1is not close to .05. Five uniform [0,1] random numbers,
. Ul,UQ,---,US, were generated and, in order to make the weight sets compar-

able, we set w, = Ui/ Z§=1 Uj; i=1,2,:-+,5. We repeated this process
10,000 times and for each weight set we computed Inhfig 2 5,049] and the
ratio of the larpest weipht to the smallest weight in the weight set.  The
10,000 ratios ranged from 1.1 to something larger than 10,000. Recall that,
because of the bounds, these probabilities must fall between .013 and .096.

In Table 2 we have reported a frequency distribution for these 10,000

probabilities. All 10,000 probabilities fell between .0219 and .0803.




w= (1,e,e,e,1) v = (e fe,l,W/e ¢)

€ R prw[ig 2 5,049] prw[ig 2 5.049] :

1.0000 1 .0500 .0500 f
.5000 2 .0k20 .0557
3 .3333 3 .0375 .0590
[ .2500 4 .0346 .0612
.2000 5 .0324 L0629

.1000 10 .0267 .0679
L0667 15 .0240 .0705
.0500 20 .0224 .0723
L0400 25 .0213 .0736
.0333 30 .0205 .0Thé

Table 1. prw[ig 2 5.049] for various weight configurations.

<
T a8 S Sy e PO |~ .11 N WAV Ry Y Tt PSP S £ . T ST O AT

Mini- Maxi- Mini- Maxi-~
Interval gﬂg;cy Rgg?o Rgg?o Interval igg;cy Rgg?o RQE?O
[.012,.016] 0 [.056,.060] 1116 2.2 £10.2
[.016,.020] 0 [.060,.064] 670 3.4 «
[.020,.024] I 20.8 ® [.064,.068] 357 5.0 bL777.9
‘ [.02h,.028] 22 18.3 571.2 [.068,.072] 145 6.9 95h3.2
' [.028,.032] 73 8.0 2450.7 [.072,.076] 54 14.9  2075.1 i
| [.032,.036] 284 5.2 ® [.076,.080] 17 3h.5  1622.1 |
[.036,.040] 719 3.4 © [.080,.084] 2 812.0  1597.7 f
[.0Lko,.0kk) 1319 2.0 L4os2.0 [.084,.088] 0 g
[.obh,.0L81 1781 1.4 3531.9 [.088,.092] 0 {
[.0h8,.052] 1876 1.1 2996.0 [.092,.096] 0 g
[.052,.056] 1561 1.4 1648.8 g
Pabde o Frequeney distreibulion for ;‘fwl.)il) = 5,000 ] with 10,000 randomly

fenerated weight sets.,
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The number of these probabilities which fell between .040 and .060 was
T3%3. We would feel that for these weight configurations the equal weights
case provided an adequate approximation.

Large ratios are not necessarily associated with poor approximations.
However, every ratio which is associated with a probability outside of
1.048,.052] is at least 1.4, indicating that if the ratio of the largest
welght to the smallest weight is less than 1.4 the equal weights case
should provide a very good approximation. Every ratio which is associ-
nted with a probability outside of .0L to .06 is at least 3.4 1indi-
cating that if the ratio of the largest weight to the smallest weight 1s less
than 3.4 then the equal weights case should provide an adequate approximation.

In another study, the weights were randomly generated in such a way
that the ratio of the largest weight to the smallest weight was constrained
2o that it will not exceed a particular value. For example, wec randomly
renerated the values of Ui {(recall that v, = Ui/ZIJi) in the interval
[1/2,3/2]. Thus, the ratio will not exceed 3. For 1000 such randomly
renerated weight sets all 1000 values of prwfii 2 5,049] fell in the inter-
val [.0410,.0592]. Results for other constraints are given in Table 3.

The quality of the equal weights approximation is related to both the
amount of variability in the weights and to the pattern of large and small
weirhts, In fact, it may be more directly related to this pattern than to
the amount of variability. If we interpret U-shaped, very broadly, to
mean any weight pattern with relatively large weights at 1 and k but
it least one relatively small weight between 1 and kK then all of the

o

wo bt confiurations for which pr er'. 2 5,000 s very amall have n
W )

~shnped confipjuration., selection .0 of thes eirhts is pive

U-chnped i tio A lect of 10 f these weights is plven

in Table b,




All 1000 values of

{a,b] prwfig 2 5.049] in:
[1/9,10/9] [.0328,.0670]
[1/4,5/4] [.0372,.0627]
”} [1/3,4/3] [.0389,.0613])
(1/2,3/2] [.0k10,.0592]
[1,2] [.04L3,.0559]
[2,3] [.0466,.0535]

Table 3. Limits on pqwﬁig 2 5.049] when weights are generated to control

the ratio of the largest to the smallest weight.

=
o

prwfig > 5.049]

88.14 L02A]
70.8 L0073
157.h L0312

.L333,.004k0,.0012,.0451,.4256)

LLB87,.09L1,.0562,.0069,.3541)

.3288,.0126,.3777,.0024,.2785)

0757,.0059,.1899,.3764)

.31A8,.2112,.0078,.0459,.5183) 66.4 .27k

.5392,.0059,.0664,.0607,.3278)

10k ,0078,.1156,.0L20, . 4222)
L5050,,0010,.2413,.0334,.1782)

(.5h74,.0910,.02h0,.0366,.3012)

fLokia L0006, 1609, .0984,.2789)

R e T S N
)
1
N
b
-
.

T65.3 .0311

-

. ’ N . . . . e - B] P
sl o Welpht, confipgurations for which nr fxr 2 5,0L0)  is smatl,

——— ]




In Robertson and Wright (1982a), it was shown that as € — 0, the

distributions corresponding to the weight sets (l,e,eg,---,ek_l)

-1 k- —
(ek ,ek 2,-'-,1) also approach the upper bound for such X2 distribu-

and

tions. So we interpret [-shaped broadly to mean any pattern with small

weights in both extremes or several adjacent small weights at either extreme.

All of the weight configurations for which prwfig 2 5.049] is very large

have such a {l~shape. A selection of 10 of these weight configurations is
given in Table 5.

In Table 6 we have listed a selection of 10 weight sets for which R
is large, but prw[ii = 5.049] is close to .05. In these cases there was
i small weight at one or both extremes and another at a nonadjacent inter-
ior vosition.

In cummary, the equal weights case appears to give fair unproxima-
tions except for weight sets having a U-shaped or a fl-shaped (interpreted
brondly) pattern of large and small weights. Regardless of this patternu,
if the ratio of the largest weight to the smallest weight is less than 1.4,
the equal weights case gives a very salisfactory approximation and if this
ratio is less than 3.4 it appears to give an adequate approximation. 1If
the pattern of large and small weights is not either U-shaped or [MN-shaped

then the equal weights case can give a satisfactory approximation for

T T TR e —

welght sets having ratios much larger than  3.h.

e An approximabion based upon the pattern of Tarpc and small woeightos,

Chiie (1MW) found a pood approximation for an importunt special case. He

wits thinking about an experimental situation in which a researcher was
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prw[.)_(?) 2 5,049) is close to .05.

w R prw[ii 2 5.049]
(.0005,.0382,.4538,.3664,.1410) 907.6 .0789
(.0128,.1719,.4122,.3340,.0690) 32.2 .0729
(.3101,.4265,.2366,.0239,.0029) 147.1 .0721
(.07b7,.1946,.3779,.3523,.0005) 755.8 .0730
(.0373,.1172,.5135,.3316,.0003) 1711.7 0770
(.0065,.0902,.2685,.5091,.1257) 78.3 L0727
(.0k411,.2618,.6850,.0117,.000k) 1712.5 L0827
(.0011,.0370,.3114,.4106,.2399) 373.3 0757
(.2622,.1880,.5439,.0055,.0004) 1359.7 .0721
(.0682,.2726,.3317,.3271,.000k) 829.5 .0ThO

Table 5. Weight configurations for which prw[_)zg 2 5.049] is large.
w R pr [Xo 2 5.09]
w5
{.0225,.2335,.4097,.0016, .3328) 273.1 .0k91
(.1118,.1941,.0032,.6453,.0457) 201.7 .0hol
(.0024,.3551,.0137,.1820,.L467) 186.1 .0hg2
(.031k4,.5413,.0002,.2894,.137T) 2706.5 .0k92
(.1276,.0017,.L400,.3283,.1023) 258.8 .0L89
(.1232,.0030,.2307,.5197,.123}4) 173.2 .0L81
(.0636,.3279,.0030,.5030,.1025) 167.7 .0510
(.2966,.0783,.0806,.5392,.0052) 103.7 .0503
(.5517,.01k2,.2524, . 1777,.00L1) 13k.6 .0515
(.0005,.3842,.0349,.1678. ,4126) 825.2 .0516
Table 6. Weight configurations for which the ratio is large and
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interested in comparing increasing dosages of a drug to a zero dose con-
trol. As Chase, and Williams (1971,1972) before him, noted, "researchers
often increase the sample size on the zero dose control over the sample
sizes of the nonzero dose levels." Assume that the control is indexed by
1. Chase developed an approximation for the case where w2==w3= ---=wk
and wl/W2 > 1.

First, Chase found a recursion formula for the limiting values of

Pw(l,k); £=1,2,---,k as wl “ ©® while the common value of w * WW

ooV
is held fixed. We denote the limiting probabilities by Pm(z,k). Chase

k

tabled critical values for the -§2 and EQ distributions associated with
B these limiting values. For values of (wl/ﬁe) between 1 and <« he found

that a linear interpolation in (wl/wg):l/2 between the equal weights case
and this limiting case gives a very adequate approximation. For example, if
C denotes the appropriate critical value computed from these limiting level

<«

probabilities and if C, denotes the appropriate equal weights critical

1
value then the approximate critical value is given by € = {l—(wl/w?)_l/g}c°°
+ (wl/wg)—l/ecl. Chase gives both exact (k<u4) and Monte Carlo (k>h)
evaluations of his approximation and concludes that they provide quite sat-
isfactory results. Our studies confirm this conclusion.

‘ Starting with Chase's recursion formula, Robertson and Wright (1982b)

derived the generating function of the sequence of limiting level probabil-

ities, k=1,2,-++-. This generating function is given by

(1/2 s +k - 3/2)

k=1

for k=1,2,*** and, in turn, yields a sharper recursion formula for the

limiting level probabilities, namely,




(2k-1)P (1,k)/(2k) = (2K)1/(2%(x1)?)

P(1,k+1)

"

P (k+] ,k+1)

1

P (k,k)/(2k) = (1/2)% /x!

]

P (£,k+1) = P_(£1,k)/(2k) + (2k~1)P_(£,k)/(2k).

Using this relation, it is a fairly simple matter to write a computer pro-
irram to generate P“ﬁl,k) for k up to any reasonable value such as 30.
For k < 12, these probabilities are tabled in Robertson and Wright (1982v).
[t was also noted in that work that the limiting values of Pw(i,k) for

the situation in which wif=w2= ce =wk—l and wk/wl — ® gre also given
by P (4,k).

We: develop an approximation for Pw(l,k) based upon a pattern of large
and small weights in w. We first obtain the limiting values for the
Pw(ﬁ,k) for each situation in which the w, assume one of two values,
one of which remains constant and the other approaches infinity. The
approximation is an interpolation between the appropriate limiting case
and the equal weights case. We try to convey the basic ideas behind the
limiting cases by heuristically considering some examples.

Suppose k =3 and that wl= w3 =® ywhile w2= 1. Let u; < u; < u;

b the maximum likelihood estimates of u],u?,u3 subject to “1 < u? s H3
and recall that PW(E,3) is computed under the assumption that By =R, = M, -

Wee may assume that their common value is zero withoul loss of generality.

Recall, also, the pool adjacent violators algorithm for computing

® % . R . . .
ul,p, and p:. This algorithm is discussed beginning on page 13 of Rarlow
ooty (1)L The value of v, is proportional to the reciprocal of the
variancee ot x.. Thus ;1 and x3 are degenerate at 0 and x_. is a
1 <
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unit normal variable. Either Eé > 0 1in which case ;é forms a violation

with x3 or X, <0 and forms a violation with ;i. If Eé < 0 then it

i1t aumalpamated with ;i and they are both replaced by their weighted aver-

yre und assipned weight w +w,, which behaves like w_ . ©3Dince the weirht

1

} : on X, is infinite the weighted average behaves like ;i. Similarly, if

1

0 il ad x| e rephaced by Lhetr welphbed svernps

st ¥ rned

anssigned weight w. +w
') E_’; 2 39

)(1,2) and Pw(2,3) = P(

or w,. Thus, Pw(3’3) = 0, Pw(l,3) = !

. P (2,2). Since P (1,2) =P (2,2
(wl,w3 l’w2) ’ w( »2) w( »2)
< ®, the limiting values are both 1/2. Noting that g

for any 0 < w_,w

1°7°2

P 4,3) = ; N
(a,b,a)( ,3) P(l,b/a,l)(z’B)’ we see that this case was treated rigor

ously by Robertson and Wright (1982a).

Now subpose w1=w3=l and w2=m. Then, ;2 is depenerate at 0

‘o while x1 and x3 are unit normal variables. If x1 <0< x3 then we
,

will have three levels. In all the other cases, either x1 or x3 is

amalgamated with ;é. When one of these amalgamations takes place the two

viariables are replaced by a variable which is degenerate at zero. It fol-

lows that the number of levels is one less than the sum of the number of

| levels among p{ and U; and the number of levels among U; and ug.

Moreover, these two numbers of levels are independent. Thus, the sequence !
2
£=1
. . . A . RN Y 2 L
w.th ituelf, Opecifically, if {P (l,))} _ *{Paﬂl,?)}lzj = {C2}1=2 then

{Pw(!,3)}3=l is related to the convolution of the sequence {P(£,2)}

CI it the probability of £-1 levels, 4£=2,3,h.

Now consider an arbitrary k and suppose il < i2 <...< ii is an
ordered subset, of {l,?,---,k}; w, =w, =-++=w, =1 while the other
i i i
1 2 J
weiprhts are infinite. Let 1 = k-j and suppose A is the number of finite

weelrhts on the left and B is the number of finite weights on the right.

- 4




® and w

Opecifically, wl =w2=---=wA=1, W z®,

Ye-B " K-B+l

= w_ =1. If one uses the pool adjacent violators algorithm to order the
first A+l estimates and the last B+l estimates, then in the former case

the last estimate will behave like x

A+l with infinite weight on it and in

the latter case the first estimate will behave like ;k-B with infinite

weri-cht, Thus, the number of levels is two less than the number of levels among

oo

. *
X+l plus oo number of levels among M

*
PN S T - —
a1 ’uk—B plus the num

ber of levels among, u; B’...’”:' Moreover, these three numbers of levels
are independent. The probabilities for the number of levels among
*

* * * . =
H s ‘pA+l and among uk-B’. -,uk are given by Chase. If wi =1 for

any 1 such that A+l =i s k-B then the corresponding xi must be

amilgamated with one of the degenerate variables to one side of ;i. Thus
ey * * .

the probabilities for the number of levels among uA+l"..’uk-B are simply

i:l' Thus the sequence of level

the cqual weipghts probabilities, {P(£,1)]
probabilities is related to a convolution of three sequences, each of which
in ensily computed. This idea is most succinctly expressed in terms of the

rreneratingg tfunction of the sequence of limiting level probabilities which

we denote by ©_  (s).

-2
Og 1 (8) =572 &, 1 (s) () &, o (s)

2 1/2 s+ A-1/2y ys+1 -1y /1/2 s+ B=-1/:
s s( )( )s( )
I

(1/2 s+ A- 1/2) s +1 -1)(1/2 s+ B- 1/2)

.-

A B

A B

A rivcarons proot could be pmiven but, it would provide no new incigshto. The




. '(&,I) are tabled in Barlow et al. (1972) and the P_(4,A+1) are tabled
in Robertson and Wright (1982b).
We recommend an approximation which is an interpolation between criti-
._Z) —?
cal values (or P-values) computed from X° or E° distributions associ-

ated with the above limiting coefficients and distritutions associated with

the equal weights case. In order to recommend a specific approximation we
necd to make two decisions. The first decision is, for a given set of
wolrthts how to decide which are large and which are small. The second is
how to interpolate. The criteria for choosing large and small weights and
“he method of interpolation seem to be interrelated and we tried a very

Prireee number of combinations, evaluating these combinations on the basis of

rardomly grenerated weigshl cets s in our evaluation of the cqual weiprhta

approximation,

We tried enlling weights large if they exceeded some fraction of the
larrest weipght, if they exceeded some fraction of the sum of weights; or
if they exceeded some value midway between the largest and smallest weights.
W tried interpolating on various powers of the ratio of the larrest weight

o the smallest weight and the ratio of the average of those weights we
called larpe and the average of the ones we called small. Choices between
combinations were not always clear but almost everything we tried secmed to
b nreterable Lo an approximation  based upon the equal weiphts case alone,

vaet upon these studies, our recommendation ic to call weiphts large

it Lhy exeeeoed

.60 min(w],wm,"',w ) + .35 max(w],wg,'°'.wk)

k
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t and to interpolate on the basis of the ratio of the 1/3 power of the aver-
age of bhe lurge weights to the average of the small weights.

1 For example, suppose k=5, w = (1,1.2,5.6,1.4,4.7) and we are

interested in a 5 percent critical value for the .ig distribution

associated with these weights. Then .65 min(wl,wg, w') +.35 max@r Vo

= b sl +.3, 5.6 = 2,61, Thus, call the first, second and fourth weights

smel L and the third and fifth large. The values of A, B and I are
plvern by A =2, B=0, I =2. The generating function of our limiting

co:fficients is given by

1/2 s+ 3/2
@05(3)=( )( )

\ (S ) (s+1)

we L2423, L
s+ TpS 4 TEsTH ggs

r:’|+—'

L

N

Thus, our limiting coefficients are Pajl,S) = ~%B’ P°$2,5) = f%,

P3,0) = f%, Plb,5) = i%; P (5,5) = 0. The five percent critical value
of the associated &? distribution is L4.8969. The five percent critical

value of the equal weights ig distribution is 5.0491. The ratio of the

averape large weight to the average small weight is 4.29. Thus, our

arnroximate 5 percent critical value is

{1 -(h.QO)_]/3] - 4,8969 + (h.zo)'1/3 - 5.0L91 = L.9906.

The actual five percent critical value is 5.0996 and the actual ig

stribution associated with these weights has the probability, .0527, to
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the right of 4.,9906. In other words, if we wanted a five percent test
and used U4.9906 as our critical value we would actually have a=.0527.

This approximation also seems to give adequate approximations for the values of

Pw(l,k) and are thus adequate for computing P-values. In this example the actual

values of Pw(l,S),"',Pw(S,S) are .1908, .4k132, .3008, .0868, .008L,
)_l/'%

v npproximabion which places weipht (.o on Lhe equal weiphto

/3

values and 1 —11.29_l on the limiting values yields the values .1952,

JAob7, L2997, L0753, .0051.

-

We evaluate our approxiwriion as follows. For an arbitrary set of 5
weights we use our procedu: ~ to compute an approximate 5 percent critical

(w). Since k is 5 we can, as before, compute an exsct value

vl ue, a‘O,).
for the prubability, "rw{ié Z oy OS(W)]' If our approximation is good, this

should be close to .05. We did this for weights of the form w = (1,6,6,6,1)
and w = (e,/E.1,0E,¢) with € = RV and R = 1,2,3,4,5,10,15,20,25,30.

The results are given in Table 7. The numbers in parentheses are the values
we obtained using the equal weights approximation. It should be noted that
the approximation based upon the pattern of large and small weights per-
forms exceptionally well for U-shaped weight sets.

In Table 8 we have reported a frequency distribution of prwfigézaos(wﬂ
for 10,000 randomly generated weight sets. All 10,000 probabilities foll
between L0314 and L0745 and 9,754 fell between .04O and .060. Recall
that for the cqual weights approximation all 10,000 f11l between (0219 and
.0803 while 7,353 of these probabilities fall between .0LO and .060.

The results of a4 study where the weight sets were randomly penerated so as

tn control the ratio of the largest weight to the smallest weight are given




w = (1,e,e,e,1)

w = (ea'\/gslﬂ/e_se)

¢ R oprBCza (0] e OC=a W)
1.0000 1 .0500 (.0500) .0500 (.0500)
.5000 2 .0535 (.0Lk20) .0514 (.0557)
.3333 3 .0540 (.0375) .0522 (.0590)
.2500 4 .0539 (.0346) .0576 (.0612)
.2000 5 .0536 (.032k4) .0588 (.0629)
.1000 10 .0520 (.0267) .0622 (.0679)
. 0667 15 .0509 (.0240) .0640 (.0705)
.0500 20 .0501 (.022k) L0652 (.0723)
.0400 25 .0k96 (.0213) L0660 (.0736)
.0333 30 .0k92 (.0205) L0667 {.07k46)

Table T.

prw[ig p-3 a'os(w)] for

various weight configurations.

18
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in Table 9. It is interesting to note that for the 6000 weight sets
generated so that R < 10, the approximation gave true a levels between
.0k and .06.

In Table 8 note that every ratio which is associated with a prob-
ability outside of [.048,.052] is at least 1.5. This is only slightly
larger than the value we obtained for the equal weights approximation.
However, every ratio which is associated with a probability outside of the
interval [.0b4,.06] is at least 4.7. The corresponding value for the equal
weights approximation was 3.4. 1In the case k = 5 we conclude that if
the ratio of the largest weight to the smallest weight is no more than 4.7
then this approximation should provide an adequate result.

In order to evaluate our approximation for larger k, we again con-
sidered randomly generated weight sets. With k = 10, weight sets of the
10

fform w, = u./z u, ,
1 og=1 J

set a OS(W)’ the approximate @ = .05 critical value was obtained. Of

i=1,2,--°,k, were generated and for each wecight

course, for k = 10, the true value of prw[ig 2 a.OS(W)] cannot be cal-
culated for arbitrary weight sets. Hence, it was estimated by Monte Carlo
techniques based on L,000 iterations. So, ten uniform variables were

needed for each weight set as well as 40,000 normal variables to estimate

the appropriate probability. This process was repeated for 1000 weirht sets.
The number of weight sets was limited by the amount of computer time re-
quired for these results. As can be seen, this project required the ren-
eration of over L0 million random variables. The frequency distribution

for the estimated probabilities is given in Table 10. If one considers the
approximation adequate if the estimated value of prw[ii 2 a.OS(W)} is in

[.0%,.0f], then it is interesting to note that Q7.7% of the estimated

vi'luen were in this range. This is a slieght increase over the case k =54
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]
ET' Mini- Maxi- Mini- Maxi-
Fre- mum mum Fre- mum mum
A Tnterval quency Ratio Ratio Interval quency Ratio Ratio
5 [.012,.016] 0 (.056,.060]  L92 3.3 2117.6
[.016,.020] 0 [.060,.064] 109 5.4 3101.k
[.020,.024] 0 [.06L,.068] 28 21.2 9545.8
f.02k,.028] 0 [.068,.072] 3 122.5  Lob.b
[.008,.032] 1 79.3 79.3 [.072,.076] 1 1238.1 1238.1
[.032,.036] 18 18.9 © {.076,.080] 0
[.036,.0k0] 86 L.7 1kik.1 [.080,.084] 0
3& [.0bo,.0k4L] Lo6 3.5 1026.5 [.084,.088] 0
- [.0uh,.048] 1730 1.5 ©  [.088,.092] 0
[.048,.052] L4577 1.1 © [.092,.096] 0
, [.052,.056] 2549 1.5 87L47.9

Table 8. Frequency distribution for prwfig 2 g 05<w)] with 10,000 randomly

generated weight sets and a b5(w) computed using the approximation.

All 1000 values of

la,b] prw[ii 2 a (w)] in:

0>

0396, .0600)
1/4,5/4] 0Lk25,.0569]
1/3,4/3] 0k31,.0561]

1/9,10/9] [.
(.
[.
1/2,3/2] [.0L43,.0548]
[.
[.

[
(
[
[

| [1,2] 0463, .0529]
[2,3] 0478,.0520]

Table 9. Bounds on prw[x (w)] when the weights are generated so

2

2 g
> .05
that the ratio of the largest weight to the smallest weight is

controlled.




ol is an indication that the quality of the approximation is maintained
ar k is increased to k = 10.

For further evaluation, we considered data sets in which the values
could be sample sizes for testing the homogeneity of a set of means versus
u trend alternative. Under the assumption of equality of variances these
viitues become the weights. We found approximate values for Pw(l,k) by
Monte Carlo techniques based on 4,000 iterations and compared these values

' Lhose obtained by our approximation.

el

We also compared the tail probabilities of the two ii dictributions
corresponding to these two sets of approximate level probabilities. For
example, in Table 2L.2 on page 617 of Neter, Wasserman and Whitmore (107%)
we found the number of twin-engine executive Jjets sold annually between
19€.8 and 1977 by an aircraft manufacturer. Taking these 10 numbers, 1h7,
175, 150, 191, 188, 179, 200, 220, 208, 330, as our weirhts we comput:d
the values of our apvroximate Pw(l,k)'s which we shall denote by
1-“”(1,10); £4=1,2,""+,10. The values of Pa,w(i,lo) and the rela*ive

fredquencies of these counts which we denote by Pm w(l,k) are renortad

b

in Table 11. The agreement is good. The maximum absolute differecncs of

IY‘ (2,17) -v (1,10)[, A=1,2,---,10 1is .0153 and nccurrs when 4 = .
W m,w

M

—2
Wwe o nlso computed the tail probabilities of the ¥ distributicns
corresponding Yo the two sets of coefficienta. Srecifically, we compubod

-"(X‘lw 2 4) for t=.5,1.0,1.5,¢-" ,30.0.  The maximpz di “Cerornce hetwoon

Phee 60 tail probabilities was 00951, occurring ot t = 1.5, The values
ATt P b rrobab i Tt ier ot = 1 0,350 (15 are <iven in Table Y. The
et bate ot b e A S e renee for the Tareer values of 4 wasn oon fhe crder

. For a sirnificance level around .1 the difference was about. D05,




Interval Frequency Interval Frequency
[.032,.036] [.052,.056) 20k
[.036,.0L0] T [.056,.060] 75
[.oho,.0kk] 68 {.060,.064] 14
[.0kL,.0L8] 265 [.06L4,.068] 2

- [.0L8,.052] 365 [.068,.072] 0

Table 10. PFrequency distribution of estimated values of prw[ifoz a OS(W)]
- L]

with 1000 randomly generated weight sets and a ._(w) computed

using the approximation. >
_ £ pm,w(z,uo) Pa)w(l,IO)
1 .09kL25 .09555%
2 .28975 L2TLhs
3 . 32600 . 320902
in .19850 .20k98
; 5 .07300 08018
' A .01600 .02021
i 7 .00225 .00333
8 .00025 L0035
g .00000 .00002
10 .00000 Nolella
Table 11, Comparison of Pa w(£,10) with P W(Z“”) ror

3 ’

1 wo= (W7, 175, 150, 101, 188 170, 2o, o0, tof L aa)
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t 2;21 Pm‘w(l,lO)P[Xi_l 2 t] Ziil PA,W(l,IO)P[xj_l 2t] Difference
| .53300 .5k302 .00903
. 3h873 .3581k L0090k
L2856 .23663 .00807
- .1h935 .15572 00637
09722 .10201 .00k4T79
.06306 .06655 .00349
.0hoT76 .0k325 .002k9
02627 .02801 L0017k
4 .01688 .01809 .00121
.01082 .01165 .00083
.00692 .00TL8 .00056
.00kbL2 .00kT9 .00037
K .00281 .00307 .00026
P .0O0179 .00196 .00017
1Y L0011k .00125 .00011

Tuble 12. Comparison of the ;2 distributions corresponding to Monte

Carlo and approximate values of Pw(z,lo). w o= (147, 175,
150, 191, 188, 179, 200, 220, 208, 330).
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for «u significance level around .05 the difference was about .003, and for
a significance level around .0l the difference was about .0008.

The equal weights P(&,10) are given in Table A.5 of Barlow, et al.
(1972). They also fit the Pm,w(z,lo) very well in this example and, in
fiet, they fit better than the approximation presented here. However, both
are clearly adequate and, in general, we have seen that the approximation
presented here outperforms the equal weights approximation.

We tried a number of weight sets with values of k 1larger than 5,
obtaining similar results each time. For example, we took the weights to
be the 12 values in Table 20.4 of Neter et al. (1978). The 12 weights
together with the approximate and Monte Carlo values are given in Table 13.
We also computed the tail probabilities of the two corresponding ie dis-
tributions at t=.5,1.0,+-,45. The maximum absolute difference in these
two functions was .002. The largest difference in these ig tail proba-
bilities corresponding to Monte Carlo P-values smaller than .15 was
.00001. Comparing with the P(4,12) from Table A.5 of Barlow et al.
(1972), we see that the Pa,w(z,12) fit better in this example. In fact
the fit for tail probabilities less than or equal to .15 is remarkable.

Another weight set and corresponding Pa,w(z,k) are presented in
Table 1Lk. The weights are taken from page 513 of Neter et al. {1978). The
maximum absolute difference in the two .ig distributions corresponding to
“able 14 is .01025 and the maximum absolute difference corresponding to

Monte Carlo P-values less than .15 is .00L415.

Thus, we have further evidence that the quality of the approximation

holds up for k 2 6,
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3 _ 2 P (4:12) P, (£:12)
1 .08600 .09011
2 .26525 .263bLL
‘ 3 . 32425 .31680
i b 20425 21131
’ 5 .09125 .08831
6 .02250 .02462
g 7 .00575 .00kL72
;: 8 .00075 .00063
g .00000 .00006
10 .00000 .00000
J 11 .00000 .00000
12 .00000 .00000

Table 13. Comparison of P w(l,k) with Monte Carlo values of Pw(l,k)
b

fer k = 1?2 and w = (155, 178, 215, 93, 1028, 11k, 17>, 158,
197, 207, 95, 183).
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L P o15) Py £515)
1 07175 .06388
2 .21800 .2125k
3 .30000 .30041
; L 23950 .2k
3 5 .11900 .12Ls59
6 .03875 .0k375
7 .01175 .01085
g 8 .00125 .00195
.. 9 .00000 .00026
| 10 .00000 .00002
11 .00000 .00000
12 .00000 .00000
3 13 .00000 .00000
1 14 .00000 .00000
j 15 .00000 .00000

Table 1h. Comparison of Pa,w(l,k) with Monte Carlo values of Pw(f,k)

for k =15 and w = (55, 20, 35, L5, LO, 25, 55, 30, 60, LS,
35, 25, L5, 35, 30).




L. Ciskind's approximation. Siskind (1976) developed a very good approxi-

mation for Pw(l,k) based upon a Taylor's expansion. The level probabili-
ties depena upon the weights only through a matrix, R, of partial corre-
lations. Let Q be the correlation matrix corresponding to the equal
wolehts caoe, Thinking of the level prababilitics as funcetions of this
mateix, ODiskind': approximation was based upon Taylor's expansions of these
level probabilities about the equal weights matrix, Q. His approximation
requires the values of certain derivatives of the P(£,k)'s evaluated at
(. Siskind provides a table of these values for k = 8. Thus, his tech-
nique is only usable for k < 8.

Let, s OS(w) denote the five percent critical value computed from

Siskind's approximation for the weight set w = (wl,wz,w3,wh,w5) of nize 5.

In Table 15 we have a frequency distribution for prwﬁig z S.OS(W)] for
2,000 randomly generated weight sets. All 2000 probabilities f@ll between
L0053 and  .0515 and 1884 fell between .04O and .0515. The percentage
which fell between .04 and .06 is slightly less than the percent that
11 between these values for the approximation based upon the pattern of
larpe and small weights, It seems unlikely that Siskind's approximation
would ever give a value larger than .052 and this is a very distinct advan-
tage for this approximation. In Siskind's study of his approximation, he
found that it did not perform well for U-shaped weights. In those cases
his approximation produced values that were considerably smaller than the
true tail probabilities. Recall that in this case the approximation based
upon the pattern of large and small weights performs quite well. Siskind's

approximation seems to be more likely to give a very low value than the

approximation based upon the pattern of large and small weights and the
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|
Fre- M;Sé- Mgﬁi- Fre- M;E;- M:ﬁ;- i
Interval quency Ratio Ratio Interval quency Ratio Ratio ‘
[.n12,.016] 0 [.056,.060] 0
[.016,.020] 0 [.060,.064] 0
r [0, .004] 0 [.064,.068] 0O
] [.ork,.028) L 196.8 819.5 [.068,.072] 0
. .o R, .0030] 1h 70.5 2471.8 [.072,.076) 0
2 030,036 o7 27.9 3126.6 [.076,.080] 0
f: [.0365,.000] 71 20.7 1076.2 [.080,.084] 0
3 [.oho,.0hkk] 179 7.1 3383.0 [.08L,.088] 0
Lokl g h81 2.9 11h7.1 [.088,.092] 0
, Coohngonel a2k 1.3 506.2 [.092,.096] 0
Foomse, .00 0
: Table 15. Frequency distribution for prw[ig 2 S.OS(V)] with 2000 rundomly

renerated weight sets. The value of s OS(W) is computed using

Siskind's approximation.
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fact. that Siskind's approximation is only valid when k s 8 1is a definite

drawback.

Acknowledgement. Carolyn Pillers wrote several of the computer programs

which were used in this study. We are indebted to her for her able assis-

tance.
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